References
1. T.H. Lee, The (Pre-) History of the Integrated Circuit: A Random Walk, IEEE Solid-State Circuits
Newsl 12, 16 (2007).
2. J.W. Orton, The Story of Semiconductors (Oxford University Press, Oxford, 2004).
3. M. Riordan and L. Hoddeson, Crystal Fire: The Birth of the Information Age, (Norton, New York,
1997).
4. C. Brown and G. Linden, Chips and Change: How Crisis Reshapes the Semiconductor Industry
(MIT Press, Cambridge, MA, 2009).
5. G.E. Moore, Cramming More Components onto Integrated Circuits, Electronics 38, 114 (1965).
6. R.H. Dennard, F.H. Gaensslen, H.-N. Yu, V.L. Rideout, E. Bassous, and A. LeBlanc, Design of
Ion-Implanted MOSFETs with Very Small Physical Dimensions, IEEE J Sol Stat Circ 9, 256 (1974).
7. M. Birkholz, P. Glogener, T. Basmer, F. Glös, D. Genschow, C. Welsch, R. Ruff, and K.P.
Hoffmann, System Integration of a Silicone-Encapsulated Glucose Monitor Implant, Biomed
EngBiomed Tech 59(s1), S1089 (2014).
8. M. Mortellaro and A. DeHennis, Performance Characterization of an Abiotic and Fluorescent-
Based Continuous Glucose Monitoring System in Patients with Type 1 Diabetes, Biosens Bioelectr
61, 227 (2014).
9. M. Birkholz, P. Glogener, F. Glös, T. Basmer, and L. Theuer, Continuously Operating Biosensor
and Its Integration into a Hermetically Sealed Medical Implant, Micromachines 7, 10 (2016).
10. J.K. Nielsen, J.S. Christiansen, J.S. Kristensen, H.O. Toft, L.L. Hansen, S. Aasmul, and
K. Gregorius, Clinical Evaluation of a Transcutaneous Interrogated Fluorescence Lifetime-Based
Microsensor for Continuous Glucose Reading, J Diabetes Sci Technol 3, 98 (2009).
11. A.J. Müller, M. Knuth, K.S. Nikolaus, R. Krivánek, F. Küster, and C. Hasslacher, First Clinical
Evaluation of a New Percutaneous Optical Fiber Glucose Sensor for Continuous Glucose Monitoring
in Diabetes, J. Diabetes Sci. Technol. 7, 13 (2013).
12. H. Jiang, X. Zhou, S. Kulkarni, M. Uranian, R. Seenivasan, and D.A. Hall, A Sub-1 ΜW
Multiparameter Injectable BioMote for Continuous Alcohol Monitoring, in 2018 IEEE Custom
Integrated Circuits Conference (CICC) (IEEE, San Diego, CA, 2018), p. 1.
13. B. Kovatchev and A. Kovatcheva, Creating the Artificial Pancreas, IEEE Spectr. 58, 38 (2021).
14. M. Frost and M.E. Meyerhoff, In Vivo Chemical Sensors: Tackling Biocompatibility, Anal. Chem.
78, 7370 (2006).
15. H. Dinis and P.M. Mendes, Recent Advances on Implantable Wireless Sensor Networks, in
Wireless Sensor Networks – Insights and Innovations, edited by P. Sallis (InTech, London, 2017).
16. A.-M. Pappa, O. Parlak, G. Scheiblin, P. Mailley, A. Salleo, and R.M. Owens, Organic
Electronics for Point-of-Care Metabolite Monitoring, Trends Biotechnol 36, 45 (2018).
17. C. Hassler, T. Boretius, and T. Stieglitz, Polymers for Neural Implants: Polymers for Neural
Implants, J. Polym. Sci. Part B Polym. Phys 49, 18 (2011).
18. T. Basmer, P. Kulse, and M. Birkholz, Systemarchitektur Intelligenter Sensorimplantate, Biomed
Eng/Biomed Tech 55, P43 (2010).
19. M. Birkholz, K.-E. Ehwald, T. Basmer, C. Reich, P. Kulse, J. Drews, D. Genschow, U. Haak,
S. Marschmeyer, E. Matthus, K. Schulz, D. Wolansky, W. Winkler, T. Guschauski, and
R. Ehwald, Sensing Glucose Concentrations at GHz Frequencies with a Fully Embedded BioMEMS,
J. Appl. Phys 113, 244904 (2013).
20. B. Kienast, B. Kowald, K. Seide, M. Aljudaibi, M. Faschingbauer, C. Juergens, and J. Gille, An
Electronically Instrumented Internal Fixator for the Assessment of Bone Healing, Bone Jt. Res. 5, 191
(2016).
21. E. Zrenner, Fighting Blindness with Microelectronics, Sci. Transl. Med. 5, (2013).
22. E. Waltz, A Spark at the Periphery, Nat. Biotechnol. 34, 904 (2016).
23. J.M. Valero-Sarmiento, P. Ahmmed, and A. Bozkurt, In Vivo Evaluation of a Subcutaneously
Injectable Implant with a Low-Power Photoplethysmography ASIC for Animal Monitoring, Sensors
20, 7335 (2020).
Implantable Microelectronics
353